IS THERE A SURJECTIVE RING HOMOMORPHISM

$$
R[[X]] \rightarrow R[X] ?
$$

All experts (I've asked) lean to a negative answer.
Explanations were given for this if R is local, or clean or potent.
Something similar is the following
Proposition 1. The zero ring is the only commutative ring R with $R[X] \cong R[[X]]$.
Proof: Assume $R[X] \cong R[[X]]$. It is known [Exercise $\mathbf{1 . 4}$ in [1], or 5.1 Theorem (Snaper) in [2]] that the Jacobson radical of $R[X]$ is equal to its nilradical. Thus, it would follow the same for $R[[X]]$. Since X lies in the Jacobson radical of $R[[X]]$ (in fact, $1+X f$ is invertible for all $f \in R[[X]]$), it follows that X is nilpotent, i.e. $X^{n}=0$ for some $n \geq 0$. This shows $R=0$.

If R is finite or countable, then $R[x]$ is countable, but $R[[x]]$ is uncountable.
1.4 In the ring $R[X]$ the Jacobson's radical equals the nilradical.
1.5 Let R be a ring and $R[[X]]$ the ring of formal power series $f=\sum_{n=0}^{\infty} a_{n} X^{n}$ with coefficients in R. Show that
(i) f is a unit in $R[[X]]$ iff $a_{0} \in U(R)$;
(ii) If f is nilpotent then a_{n} is nilpotent for ever $n \geq 0$. Is the converse true ? [see below: Ch. 7, Ex. 2]
(iii) $f \in J(R[[X]])$ iff $a_{0} \in J(R)$;
(iv) The contraction of a maximal ideal \mathfrak{m} of $R[[X]]$ is a maximal ideal of R and \mathfrak{m} is generate by \mathfrak{m}^{c} and X;
(v) Every prime ideal or R is the contraction of a prime ideal of $R[[X]]$.

Here, if $\varphi: R \rightarrow S$ is a ring homomorphism, and \mathfrak{b} is an ideal of S, then $\varphi^{-1}(\mathfrak{b})$ is called the contraction of \mathfrak{b}, denoted \mathfrak{b}^{c}.

Ch. 7, Ex. 2 Let R be a Noetherian ring and $f \in R[[X]]$. Then f is nilpotent iff each a_{n} is nilpotent.

However the answer is YES!

The solution was given by Yiqiang ZHOU.
Since $f: R[[X]] \rightarrow R$, given by $f\left(a+b X+c X^{2}+,,,\right)=a$ is a retraction of rings (so more than surjective ring homomorphism), clearly it suffices to give an example of ring R such thar $R \cong R[X]$. Let S be any ring and let $R=S\left[X_{1}, X_{2}, \ldots\right]$. The $R[X]=S\left[X_{1}, X_{2}, \ldots\right][X] \cong S\left[X, X_{1}, X_{2}, \ldots\right] \cong S\left[X_{1}, X_{2}, \ldots\right]=R$, and we are done.

Notice that if $R \cong R\left[X_{1}\right]$, then $R\left[X_{1}\right] \cong R\left[X_{1}\right]\left[X_{2}\right]=R\left[X_{1}, X_{2}\right]$, so $R \cong$ $R\left[X_{1}, X_{2}\right]$. By induction $R \cong R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$. This leads us to another

Question. Does it imply $R \cong R\left[X_{1}, X_{2}, \ldots\right]$?

References

[1] M. F. Atiyah, I. G. MacDonald Introduction To Commutative Algebra Addison-Wesley Series in Mathematics, 1969
[2] T. Y. Lam A first course in noncommutative rings. Sec ond Edition. Graduate texts in Math. 131, Springer New York Inc., 2001

