IS THERE A SURJECTIVE RING HOMOMORPHISM $R[[X]] \rightarrow R[X] \ \textbf{?}$

All experts (I've asked) lean to a negative answer. Explanations were given for this if R is local, or clean or potent.

Something similar is the following

Proposition 1. The zero ring is the only commutative ring R with $R[X] \cong R[[X]]$.

Proof: Assume $R[X] \cong R[[X]]$. It is known [Exercise **1.4** in [1], or **5.1** Theorem (Snaper) in [2]] that the Jacobson radical of R[X] is equal to its nilradical. Thus, it would follow the same for R[[X]]. Since X lies in the Jacobson radical of R[[X]] (in fact, 1 + Xf is invertible for all $f \in R[[X]]$), it follows that X is nilpotent, i.e. $X^n = 0$ for some $n \ge 0$. This shows R = 0.

If R is finite or countable, then R[x] is countable, but R[[x]] is uncountable. **1.4** In the ring R[X] the Jacobson's radical equals the nilradical.

1.5 Let R be a ring and R[[X]] the ring of formal power series $f = \sum_{n=0}^{\infty} a_n X^n$

with coefficients in R. Show that

(i) f is a unit in R[[X]] iff $a_0 \in U(R)$;

(ii) If f is nilpotent then a_n is nilpotent for ever $n \ge 0$. Is the converse true ? [see below: Ch. 7, Ex. 2]

(iii) $f \in J(R[[X]])$ iff $a_0 \in J(R)$;

(iv) The contraction of a maximal ideal \mathfrak{m} of R[[X]] is a maximal ideal of R and \mathfrak{m} is generate by \mathfrak{m}^c and X;

(v) Every prime ideal or R is the contraction of a prime ideal of R[[X]].

Here, if $\varphi : R \to S$ is a ring homomorphism, and \mathfrak{b} is an ideal of S, then $\varphi^{-1}(\mathfrak{b})$ is called the *contraction* of \mathfrak{b} , denoted \mathfrak{b}^c .

Ch. 7, **Ex.2** Let R be a Noetherian ring and $f \in R[[X]]$. Then f is nilpotent iff each a_n is nilpotent.

However the answer is YES !

The solution was given by Yiqiang ZHOU.

Since $f: R[[X]] \to R$, given by $f(a+bX+cX^2+,...) = a$ is a retraction of rings (so more than surjective ring homomorphism), clearly it suffices to give an example of ring R such that $R \cong R[X]$. Let S be any ring and let $R = S[X_1, X_2, ...]$. The $R[X] = S[X_1, X_2, ...][X] \cong S[X, X_1, X_2, ...] \cong S[X_1, X_2, ...] = R$, and we are done.

Notice that if $R \cong R[X_1]$, then $R[X_1] \cong R[X_1][X_2] = R[X_1, X_2]$, so $R \cong R[X_1, X_2]$. By induction $R \cong R[X_1, X_2, ..., X_n]$. This leads us to another **Question**. Does it imply $R \cong R[X_1, X_2, ...]$?

References

- M. F. Atiyah, I. G. MacDonald Introduction To Commutative Algebra Addison-Wesley Series in Mathematics, 1969
- [2] T. Y. Lam A first course in noncommutative rings. Sec ond Edition. Graduate texts in Math. 131, Springer New York Inc., 2001

 $\mathbf{2}$